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A Theorem on Intersecting Chords on a Circle
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Introduction

Starting from a locus problem about a point and a circle, a nice theorem on
intersecting chords is found. The theorem is not commonly known to teachers
and students, but the statement could be easily understood. A proof of the

theorem is presented using Ceva’s Theorem and similar triangles.

The Locus Problem

Let P be a fixed point outside a fixed circle. Two lines from P cut the circle
at four points 4, B, C and D. Let Q be the intersection of the diagonals of the
quadrilateral formed by the four points (Figure 1). As the two chords move, find
the locus of Q.

P

Figure 1 — Locus of O as two chords move

Readers are suggested to try an exploration to obtain the locus of Q and
test your finding.
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Answer. Using the trace function of a dynamic geometry software, we
find that the locus is a chord on the circle. Where are the endpoints of the
chord? If we consider the limiting case when the chord PCD moves away and
becomes a tangent, then C and D coincide at the point of contact of the tangent
and the “diagonals” AC and BD intersect at the same point, i.e. C =D = Q. By
symmetry, the other endpoint must be the other point of contact from P. Hence

we conclude that the locus of Q is the chord of contact from P to the circle.

The Theorem
We can formulate the answer to the locus problem into the following
theorem about chords on a circle.

Theorem.

Let P be a point outside a circle. Two lines from P cut the circle at four points to
form a quadrilateral ABCD. Then the chord of contact of P to the circle passes
through the intersection point of the diagonals AC and BD (Figure 3).

Figure 3

Proof.
To prove the theorem, we denote the contact points of the two tangents from P
to the circle by X and Y (Figure 3). It suffices to show that XY, AC and BD are
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concurrent. As these are the three main diagonals of a cyclic hexagon, we may
apply the following lemma to check the concurrency.

Lemma.
Let ABCDEF be a cyclic hexagon. The three main diagonals AD, BE and CF are
concurrent if and only if 4B - CD - EF = BC - DE - FA.

Figure 4

Proof of Lemma.

We use Ceva’s Theorem to prove this. Consider AACE, and let AD, BE and CF
cut the sides of the triangles at D’, B’ and F” respectively (Figure 4). By the
theorem of Ceva, AD, BE and CF are concurrent if and only if
AB'_CD"EF':1

B'C D'E F'A

But

AB' [BAE] 1AE-ABsin/BAE _AB AE

B'C [BCE] LEC-BCsin/BCE BC EC

Here [P P,Ps] represents the area of APP,P3; and the last equality holds as ~
BAE + 2 BCE = 180° for cyclic quadrilateral ABCE.

Similarly. we have C2 = CP CA EF'_EF EC
1milarly, we have D'E _DE AE an F'A FA C4°
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Hence

AB' CD' EF' _(AB AE)(CD CA)(EF EC
B'C D'E F'A BC EC DE AE FA CA

" BC DE FA EC AE CA

_AB CD EF

" BC DE FA

Hence the necessary and sufficient condition for the three main diagonals to be
AB CD EF

concurrent is

BC DE FA

This completes the proof of the lemma.

=1,1.e. AB-CD-EF = BC-DEFA.

For the proof of the theorem, we need to check the condition in the lemma
that XA-DY-CB = AD-YC-BX. From the tangents PX and PY and property of
angles in the alternate segment, we have APX4A ~APBX and APDY ~APYC.

Figure 5
Hence
XA =BX il d DY=YC b 1
= 7B an = 15% (D
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Consider another pair of similar triangles APCB ~APAD, we have

cB-ap- 22 2
=AD" (2)

Putting (1), (2) and PX = PY (tangent property) together, we have

XA-DY-CB = BX-YC-AD LeS ) Q—BXYCAD
B PB PY PD '

This completes the proof of the theorem.

Generalizations

From Inside to Outside

Figure 6

The theorem holds also for the other configuration of C and D (Figure 6).

The intersection point of 4C and BD lies outside the circle is also lying on the

chord of contact (extended). In other words, AC, BD and XY are concurrent. In

circle geometry, the point P and the chord of contact XY are called the pole and

polar with respect to the circle, which have many fascinating properties.

We start with a point P outside a given circle and two chords are drawn to

the circle which form a quadrilateral. Then both the intersection point of the

diagonals and the intersection point of the opposite sides lie on the chord of
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contact. This provides a straight-edge-only construction of the chord of contact

from a given point outside a circle.

From Circle to Conics

The theorem holds not just for circles, but in general for all conic sections.
One way to see this is by considering central projections. Central projections
send a circle on a plane to another conic section on another plane, and send lines

to lines while retaining collinearity, concurrency and tangency (Figure 7).

An ellipse

Figure 7: Central projections sending a circle to an ellipse and a parabola

Conclusion

I came across the theorem as a lemma of a harder geometric problem.
The proof of this requires the use of the Pascal’s Theorem for cyclic hexagon. I
would like to find a proof of this without using this harder theorem. The
theorem is fascinating, as it could be easily stated in school geometry, yet this
property of concurrent chords is not well-known to us. I would like to see

whether there is a simpler proof for secondary school students.
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