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The Euclidean and Bezoutian Algorithms 
 

Jack Chen 
Old Scona Academic High School 

There is a systematic method of finding the greatest common divisor of 
two positive integers. It is called the Euclidean Algorithm after the ancient 
Greek mathematician Euclid, famous for his treatise The Elements, which is the 
premiere publication on the subject of geometry. 

The calculations required are mechanical, and can be summarized as 
follows. 
(1) Put the larger of the two given numbers into box A and the smaller one into 

box B. 
(2) Divide the number in box A by the number in box B. 
(3) If the division is exact, go to Step (5). If not, move the number in box B to 

box A and put the remainder obtained from the division into box B. 
(4) Return to Step (2). 
(5) The number in box B is the greatest common divisor we seek, and the 

Algorithm is terminated.  

As a numerical example, let us find the greatest common divisor of 289 
and 221. 
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The algorithm was first described in Euclid’s The Elements, though Euclid 
himself –who complied previous mathematical results in his treatise– may not 
have discovered it (B. L. van der Waerden has argued that the algorithm 
originated from the school of Pythagoras). As Euclid is most famous for his 
geometric work, a natural question, then, is why the geometer Euclid has this 
number-theoretic algorithm named after him. It turns out that in ancient Greece, 
arithmetic was visualized in geometric means. For instance, the addition 3 + 4 
was visualized as the construction of a line segment whose length is equal to the 
total length of two given segments of lengths 3 and 4. Furthermore, Greek 
numerals were clumsy and quickly became long as numbers became large. They 
could not be added conveniently and as a result, the Greeks turned to geometry. 
Indeed, in ancient Greece, the development of number theory pales in 
comparison to the development of geometry. However, of note is that fact that 
books VII, VIII, and IX of The Elements are all about number theory, so perhaps 
it isn’t all too surprising that a number theory algorithm was named after Euclid. 

How then can the Euclidean Algorithm be visualized? Let us continue with 
the example above, that of finding the greatest common divisor of 289 and 221. 
We start with a 221 × 289 rectangle. At each stage, we cut off the largest 
possible square and discard it. We continue until the residual rectangle is a 
square. The side length of this final square will be the desired greatest common 
divisor. 
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The steps in the geometric construction correspond exactly with the steps 
in the numerical computation before. 

It should be emphasized that the geometric construction always terminates 
since the integral dimensions of the resulting rectangles continue to diminish. 
From a 221×289 rectangle, we downsize to a 68 × 221 rectangle and then a 

6817×  rectangle. After cutting off 17 × 17 squares, we are left with a single 
1717× , signifying that 17 is the desired greatest common divisor. 

It is easy to see why this geometric form of the Euclidean Algorithm 
always produces the correct answer. In our example, the final step shows that 17 
divides 68. Since 221 is a combination of 68 and 17, 17 also divides 221. 
Similarly, since 289 is a combination of 221 and 68, 17 divides 289 too. Hence 
17 is indeed a common divisor of 289 and 221. Moreover, it must be the 
greatest common divisor. If there is a greater one, it would have appear before 
we come to the 17 × 17 square. 

Note that we used a rectangle in our geometric representation, and not 
another figure such as a line segment or triangle. A rectangle allows us to make 
the numbers 289 and 221 into the figure’s side length. Following the steps 
above, we obtain a resulting square whose side length is the greatest common 
divisor. A rectangle is a two-dimensional figure that allows us to represent both 
289 and 221 in tandem. A representation of the Euclidean Algorithm could be 
made with two separate line segments, but the rectangular representation is both 
neater and more elegant. 

The symbol △ is used in this paper to represent the operation of finding 
the greatest common divisor of two positive integers. The companion operation 
of finding the least (positive) common multiple of two positive integers is 
symbolized by ▽. The benefit of using these symbols in this context is 
twofold. One, it allows for neater presentation less parentheses are needed 
(parentheses are traditionally used to represent the greatest common divisor 
operation). Two, it emphasizes the fact that the process of calculating a greatest 
common divisor is a binary operation, similar to addition or multiplication. 
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Placing a symbol between two elements makes the greatest common divisor 
operation appear visually to be a binary operation, and is thus a more accurate 
representation. 

For positive integers a, b and c, we have 

(1) a△a = a▽a = a ; 

(2) a△b = b△a  and  a▽b = b▽a ; 

(3) a△(b△c) = (a△b)△c  and  a▽(b▽c) = (a▽b)▽c ; 

(4) a△(b▽c) = (a△b)▽(a△c)  and  a▽(b△c) = (a▽b)△(a▽c) . 

What we have proved above is that 289△221 = 221△68 = 68△17 =17 . 

A linear combination of two positive integers, say 289 and 221, is an 
expression of the form 289x + 221y where x and y are integers, obviously one 
positive and one non-positive. An important property of the greatest common 
divisor of two positive integers is that it is always expressible as a linear 
combination of them. This can be proved theoretically using the Well-Ordering 
Principle, but there is a method which produces explicit values for x and y. This 
is known as the Bezoutian Algorithm, named after Bezout, an eighteenth 
century French mathematician. 

The Bezoutian Algorithm is closely tied to the Euclidean Algorithm. In 
fact, it may be regarded as an extended Bezoutian Algorithm. Whereas the 
Euclidean Algorithm finds us the greatest common divisor, the Bezoutian 
Algorithm extends the process and finds us the greatest common divisor as a 
linear combination of the two original numbers. The Bezoutian Algorithm, in a 
sense, reverses the Euclidean Algorithm by finding combinations of numbers 
that result in a given greatest common divisor. Additionally, both algorithms 
have similar applications. For example, they are both widely used in 
cryptography and public-key encryption. The Bezoutian Algorithm consists of 
two steps. 
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(1) For each remainder obtained in the Euclidean Algorithm, starting with the 
smallest, write down an equation showing how this remainder is obtained. 
In our introductory example, these equations are: 

17 = 221 – 3 (68) , 
68 = 289 – 221 .  

(2) Combine the equations obtained in Step (1), starting with the equation for 
the greatest common divisor. Substitute into this equation the one for the 
second smallest remainder, and then simplify by combining like terms. 
Continue until all intermediate numbers generated by the Euclidean 
Algorithm have been eliminated, and the original two numbers have been 
reached. Continuing with the example in Step (1), we have 

        17 = 221 – 3 (68) 
17 = 4 (221) – 3 (289) 

This yields the linear combination 289 (–3) + 221(4) = 17. 

The Bezoutian Algorithm, though straightforward, is quite cumbersome. It 
is also counter intuitive since we usually simplify things rather than blowing 
them up. Sometimes, halfway through the computations, we start simplifying 
too far, and end up with a trivial statement such as 1 = 1. On the other hand, if 
we have made some errors, there is a very good way to find out where it is. 
With no errors, each line must have the greatest common divisor as its value. So 
the first line where the value is no longer the same is obtained erroneously from 
the previous line. 

The Bezoutian Algorithm was not featured in The Elements, but as an 
extension of the Euclidean Algorithm, it could have been. It would not be 
unreasonable for the Bezoutian Algorithm to be featured in Book 14 of The 
Elements, which would be an extension of the number theory presented in Book 
7. If the Bezoutian Algorithm were featured in The Elements, there would be 
several implications. It may have led to a quicker development of Euclid’s 
Lemma and The Chinese Remainder Theorem, both of which resulted from the 
Bezoutian Algorithm. Additionally, ancient Greece and the mathematical world 
as a whole would have a greater understanding of number theory and modular 
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arithmetic, potentially leading to a faster development of mathematics. 

To visualize it geometrically, let us extract from the earlier diagram for the 
Euclidean Algorithm two significant portions. 

 

We can combine the two diagrams above by removing the shaded parts, as 
shown below. 

 

We are down from three copies of 68 to two. To continue its elimination, 
we first modify the last diagram by moving one copy of 68 to the left, as shown 
below. 

 

Combine this with the first diagram to eliminate the second copy of 68. 
After the third copy of 68 has been eliminated in the same way, we will have 
four copies of 221 on the bottom row and three copies of 289 plus the lone copy 
of 17 on the top row. 
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頁碼 章節/位置 原文 修正為 

70 • Method 2 MK2 = x2  cm MK = x2  cm 
71 • Method 3 (b) (i) Express AE, DE and AE in terms 

of x respectively. 
Express AK, KE and AE in terms 
of x respectively. 

72 4. Concluding 
Remarks 

… also help our students to figure 
out that by … 

… also help our students to figure 
out that KE=ME by … 

72 4. Concluding 
Remarks 

In fact, students can also find 
by … 

In fact, students can also find CE 
by … 

 


