Converting Denary Numbers to Binary Numbers

Leung Chi Kit Methodist College

I suppose teachers would not have any difficulty in explaining the algorithm of converting binary numbers to denary numbers to their students. Say, to convert 1011001_2 , we can give a solution as follows:

1011001₂

$$= 2^6 + 2^4 + 2^3 + 1$$

$$= 64 + 16 + 8 + 1$$

= 89₁₀

However, it is not easy for the other way round. In most textbooks, only the following algorithm, by using short division, was given when demonstrating how to convert 89_{10} to binary. No further explanation on this algorithm was given.

2) 89	_
2)44	1
2)_22	0
2)_11	0
2)5	1
2)2	<u> </u> 1
	1	0

 \therefore 89₁₀ = 1011001₂.

Very often, students were not convinced even though I told them that this process was just a reverse process of the previous one with multiplication and addition being "reversed" by division and subtraction.

This year, I used a new method to solve the problem and eventually I found out that my method could also be used to explain the short-division algorithm. 數學教育第二十八期 (8/2009)

My method is simple, to subtract the greatest power of 2 from the given (or remaining) value. The method is illustrated as follows.

 89_{10} = 64 + 25 (2⁶ = 64 < 89; 2⁷ = 128 > 89; and 89 - 64 = 25) = 64 + 16 + 9 (2⁴ = 16 < 25; 2⁵ = 32 > 25; and 25 - 16 = 9) = 64 + 16 + 8 + 1 (2³ = 8 < 9; 2⁴ = 16 > 9; and 9 - 8 = 1) = 2⁶ + 2⁴ + 2³ + 1 = 1011001₂

Then the short-division algorithm can be easily explained by comparing the following two computations.

2)89	2) <u>64 + 16 + 8 + 1</u>	
2)441	2) <u>32 + 8 + 4</u>	<u></u> 1
2) 220	2) <u>16 + 4 + 2</u>	0
2) <u>11</u> 0	2) <u>8 + 2 + 1</u>	0
2) <u>5</u> 1	2) 4 + 1	
2) 21	2)_2	1
	10	1	0

 \therefore 89₁₀ = 1011001₂.

The short-division algorithm is mechanical but not easy to understand its theory behind. My method is straightforward but a bit slow. Students are allowed to use either method in tests and examinations.

Author's e-mail: jckleung@netvigator.com