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Bisecting a Trapezium 
 

Francis Lopez-Real 
The University of Hong Kong 

A Construction Problem 
As part of the PGDE Mathematics Major course at the University of Hong 

Kong we devote a number of sessions to problem solving.  In some of these 

sessions students are given a range of problems to solve where the purpose is 

not simply to find a solution but also to identify the problem-solving strategies 

they use, to see if alternative solutions are possible, and to consider how helpful 

the use of ICT (Information and Communication Technology) may be.  In 

particular, geometry problems are usually rich in alternative solutions and I 

discuss one such problem here: 

Given any point  P  on the shorter parallel side of a trapezium, construct a 

line that bisects the trapezium into two equal areas. 

 

 

 

 

 

Figure 1 

The most common solution produced (perhaps unsurprisingly) is as 

follows. 

SOLUTION 1 In Figure 2, join  MN  (the mid-points of  BC  and  AD  

respectively).  Mark  E ,  the mid-point of  MN .  Construct  PQ  

through  E  as shown. 
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Figure 2 

This construction is based on the strategy of first identifying a known line 

that does bisect the trapezium.  In this case,  MN  is clearly such a line.  

Then we require a line from  P ,  crossing the line  MN  at  E  and 

intersecting  AD  at  Q ,  such that  area(∆PME) = area(∆QNE) .  (This is 

a “balancing” strategy since  area(∆PME)  is being subtracted from the area 

of  ABMN  and  area(∆QNE)  is being added to it).  It is easy to show that 

if  E  is taken as the mid-point of  MN  then our aim is achieved (since 

∆PME  and  ∆QNE  are then in fact congruent).  In addition to this 

construction some students found the following two solutions. 

SOLUTION 2 In Figure 3, mark  M  and  N ,  the mid-points of  AB  and  

CD  respectively.  Draw the lines  PMG  and  PNH .  Mark  Q , the 

mid-point of  GH .  Then  PQ  bisects the trapezium  ABCD . 

 

 

 

 

 

Figure 3 

The strategy in this construction is to replace  ABCD  by a triangle of 
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equal area, with  P  as its apex (since we know that the area of a triangle is 

easily bisected by a median).  Again, it is fairly trivial to see that choosing the 

mid-points  M  and  N  will achieve this aim.  (As with the previous 

construction, this can also be interpreted in terms of “balancing” areas).  A 

third solution produced by the students appears slightly indirect but is quite 

ingenious: 

SOLUTION 3 In Figure 4, construct  TD = BP  and  AS = PC .  Join  PS  

and  PT .  Mark Q ,  the mid-point of  ST .  Then  PQ  bisects the 

trapezium  ABCD . 

 

 

 

 

 

Figure 4 

This construction again seeks to effectively reduce the problem to bisecting 

a triangle.  But here, two equal area trapeziums  (ABPS  and  DCPT)  are 

first constructed on either side of  P .  Having divided the trapezium into 

three areas, the outer two of which are equal, the problem is reduced to 

bisecting the middle area  (i.e. ∆PST ) . 

I am quite sure other constructions are possible and the reader might like to 

try to find yet another solution.  However, apart from the challenge of finding 

alternative solutions, such a problem also suggests other related problems that 

could be tackled.  For example, if we consider triangles, can we find a 

construction that bisects any triangle from any point on one of its sides?  What 

about any quadrilateral, or any polygon?  Clearly the latter examples are likely 

to be very challenging indeed at secondary level, but let’s consider the first of 

these suggestions. 
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Bisecting Triangles 
The problem can be described by reference to Figure 5. 

Given any  ∆ABC  and a point  P  on one side (say  BC ),  construct a 

line  PQ  that divides  ∆ABC  into two equal areas. 

 

 

 

 

Figure 5 

If we use a similar strategy to that described in SOLUTION 1 of the 

trapezium problem, we could start by identifying a known line (drawn to  BC )  

that does bisect the triangle.  The obvious choice is the median  AM ,  as 

shown in Figure 6a. 

 

 

 

 

 

Figure 6a Figure 6b 

We need to construct a line  PQ ,  crossing  AM  at  E ,  such that  

area(∆PEM) = area(∆AEQ)  (using the “balancing” principle again).  But if 

we join  AP  then this is the same as requiring  area(∆APM)= area(∆APQ).  

This is easily achieved using the theorem that triangles on the same base and 

between the same parallels are equal in area.  Thus we now have quite a simple 

construction, as illustrated in Figure 6b:  Draw the line  AP .  From  M ,  
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the mid-point of  BC , construct  MQ  parallel to  AP .  Then  PQ  

bisects  ∆ABC .  It’s worth pointing out here that the construction is valid 

whether  P  is to the left of  M  or the right of  M .  In the latter case the 

point  Q  will then be on  AB  as shown in Figure 6c. 

 

 

 

 

Figure 6c 

Back to the Trapezium 
Well, the triangle problem turned out not to be as difficult as we might 

have thought, even though it is more general in nature than the trapezium 

problem.  But notice that we have used similar strategies to those we employed 

in the trapezium problem.  Let’s now return to that problem but give ourselves 

a further challenge.  In the original problem it was specified that  P  should 

be on the shorter of the two parallel sides.  What is the significance of this?  

In other words, how is the problem changed by starting with any point  P  on 

the longer parallel side? 

 

 

 

 

 

Figure 7 
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If we consider the first solution to the original problem, we can easily find 

the range of positions of point  Q  on  AD  as point  P  moves along the 

whole of  BC .  This is shown as the line segment  GH  in Figure 7. 

Now consider starting with any point on  AD .  Clearly if the point lies 

on  GH  then the original construction is still valid.  But what happens if the 

point lies within  AG  or  HD ?  Using the same construction we would 

have a situation like that shown in Figure 8. 

 

 

 

 

 

Figure 8 

As before,  ABMN  is half the area of  ABCD , and  ∆PNE  is 

congruent to  ∆SME .  Hence the construction line  PET  gives us an area  

ABCTP  which is less than half the area of  ABCD  (by an amount equal to  

area(∆CST) ).  Correspondingly,  area(∆PDT)  is more than half of  ABCD  

by the same amount.  So the problem now is to construct a point  Q  on  TD  

such that  area(∆PTQ) = area(∆CST) .  It’s not immediately obvious how this 

might be done so let’s take it in stages and try to transform  ∆CST  while 

keeping its area invariant.  In the following diagrams, to avoid confusion, the 

line  MEN  is omitted but remember that line  PTS  was constructed 

through the point  E .  (Also, the length of  BC  has been shortened simply 

because this makes the subsequent constructions visually clearer).  

In Figure 9a, construct  TK = TS  and join  KC .  Hence  area(∆CKT) 

= area(∆CST) .  Also, if we join  CP  we can see that  
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TP

TK
 .  

Now in Figure 9b, construct  TL = TC  and join  PL . Hence  

area(∆PCT) = area(∆PLT).  

 

 

 

 

 

Figure 9a Figure 9b 

The problem will now be solved if we can construct  Q  such that  

TL

TQ
 = 

TP

TK
 .  But this can now be easily done by constructing  KQ  

parallel to  PL .  This final construction is shown in Figure 9c. 

 

 

 

 

 

Figure 9c 

The two shaded triangles in Figure 9c are equal in area and hence we have 

achieved our goal of transforming the area of  ∆CST  to its required new 

position in the trapezium. 
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Conclusion 
Changing the initial conditions of the trapezium problem certainly made it 

a great deal more challenging.  Even with the help of dynamic geometry 

software I still found this a tough problem.  Apart from my own struggle, its 

difficulty was made abundantly clear to me by the fact that none of my students 

was able to solve it.  And even after having found a possible construction, I’m 

less than enamoured by it, to say the least.  It’s not at all the elegant 

construction one would hope to arrive at.  Perhaps readers may be able to 

come up with something a little more “direct” and satisfying.  As far as other 

challenges are concerned, I have already suggested a couple earlier.  In 

addition, having seen that bisecting an arbitrary triangle turned out to have quite 

a neat solution, we might ask ourselves about bisecting the perimeter of any 

triangle from any point on a side.  In fact, this is not likely to be a very difficult 

problem but how about combining these two ideas?  That is, can we find a line 

(or more than one) that bisects both the area and perimeter of an arbitrary 

triangle?  It’s clear that some special cases exist; the situation for an isosceles 

triangle, for example, is trivial.  However, I suspect that in general this is quite 

a challenging problem.  Again, perhaps readers may like to follow it up. 
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