A Property of Conic Section

ZHANG Yun Xi'an No. 1 Secondary School

In this article, I will introduce a property of conic section.

THEOREM 1 Let a focus of an ellipse be F and two points on the ellipse be A and B such that A, B and F are collinear. Two tangents of the ellipse passing through A and B are drawn. If the point of intersection of the two tangents is M, then $FM \perp AB$.

PROOF Let the equation of the ellipse be $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0). Let F(-c, 0) be its left focus. According to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, we can get $\frac{2x}{a^2} + \frac{2yy'}{b^2} = 1$ and so $y' = -\frac{b^2x}{a^2y}$.

Let the coordinates of A and B be (x_1, y_1) and (x_2, y_2) respectively. Let k_A and k_B be the slopes of the tangents at A and B respectively. Then $k_A = -\frac{b^2 x_1}{a^2 y_1}$, $k_B = -\frac{b^2 x_2}{a^2 y_2}$.

Let $\overrightarrow{AF} = \lambda \overrightarrow{FB}$ $(\lambda > 0)$. Since $\overrightarrow{AF} = (-c - x_1, -y_1)$, $\overrightarrow{FB} = (x_2 + c, y_2)$, $-c - x_1 = \lambda x_2 + \lambda c$, $-y_1 = \lambda y_2$.

So
$$y_1 = -\lambda y_2$$
, $x_1 = -\lambda c - c - \lambda x_2$. (1)

According to
$$\frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} = 1$$
 and (1), we have

$$\frac{(-\lambda c - c - \lambda x_2)^2}{a^2} + \frac{(-\lambda y_2)^2}{b^2} = 1$$
 and hence

 $b^{2}\lambda^{2}c^{2} + b^{2}c^{2} + b^{2}\lambda^{2}x_{2}^{2} + 2b^{2}c^{2}\lambda + 2b^{2}c\lambda^{2}x_{2} + 2b^{2}c\lambda x_{2} + a^{2}\lambda^{2}y_{2}^{2} = a^{2}b^{2}.$ (2)

數學教育第二十五期 (12/2007)

According to
$$\frac{x_2^2}{a^2} + \frac{y_2^2}{b^2} = 1$$
, we have
 $b^2 \lambda^2 x_2^2 + a^2 \lambda^2 y_2^2 = a^2 b^2 \lambda^2$. (3)
(2) - (3): $2b^2 c \lambda (1 + \lambda) x_2 = a^2 b^2 - a^2 b^2 \lambda^2 - b^2 c^2 \lambda^2 - 2b^2 c^2 \lambda - b^2 c^2$
 $2 c \lambda (1 + \lambda) x_2 = a^2 (1 - \lambda^2) - c^2 (1 + \lambda)^2$
 $2 c \lambda x_2 = a^2 (1 - \lambda) - c^2 (1 + \lambda)$
 $= b^2 - \lambda (a^2 + c^2)$, as $a^2 - c^2 = b^2$.
 $x_2 = \frac{b^2 - \lambda (a^2 + c^2)}{2c\lambda}$

Hence $x_1 = -\lambda c - c - \lambda \cdot \frac{b^2 - \lambda(a^2 + c^2)}{2c\lambda} = \frac{b^2\lambda - 2c^2 - b^2}{2c}$.

The equation of tangent at A is

$$y - y_{1} = -\frac{b^{2}x_{1}}{a^{2}y_{1}}(x - x_{1}) = -\frac{b^{2}x_{1}}{a^{2}y_{1}}x + \frac{b^{2}x_{1}^{2}}{a^{2}y_{1}} .$$
So $y = -\frac{b^{2}x_{1}}{a^{2}y_{1}}x + \frac{b^{2}}{y_{1}}.$
(4)

Similarly, the equation of tangent at *B* is $y = -\frac{b^2 x_2}{a^2 y_2} x + \frac{b^2}{y_2}$. (5)

By (4) and (5), we have
$$x = \frac{a^2(y_1 - y_2)}{x_2y_1 - x_1y_2}$$
 (6)

Combining (1) and (6), we can get $x = -\frac{a^2}{c}$.

Combining
$$x = -\frac{a^2}{c}$$
 and (4), we have

$$y = \frac{b^2(c+x_1)}{cy_1} = \frac{b^2c+b^2x_1}{cy_1}$$

•

Thus
$$M = \left(-\frac{a^2}{c}, \frac{b^2c + b^2x_1}{cy_1}\right)$$
.
 $\overrightarrow{FM} = \left(-\frac{a^2}{c} + c, \frac{b^2c + b^2x_1}{cy_1}\right) = \left(-\frac{b^2}{c}, \frac{b^2c + b^2x_1}{cy_1}\right)$,
 $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (x_2 + \lambda c + c + \lambda x_2, y_2 + \lambda y_2) = (1 + \lambda)(x_2 + c, y_2)$.
Then $\overrightarrow{FM} \cdot \overrightarrow{AB} = -\frac{b^2}{c}(1 + \lambda)(x_2 + c) + \frac{b^2y_2}{cy_1}(1 + \lambda)(c + x_1)$
 $= -\frac{b^2}{c}(1 + \lambda)(x_2 + c) - \frac{b^2}{c\lambda}(1 + \lambda)(c + x_1)$
 $= -\frac{b^2}{c\lambda}(1 + \lambda)(\lambda x_2 + \lambda c + c + x_1) = -\frac{b^2}{c\lambda}(x_1 + \lambda x_2 + c + c\lambda)$.
By (1), we know $x_1 + \lambda x_2 + c + c\lambda = 0$. So $\overrightarrow{FM} \cdot \overrightarrow{AB} = 0$.

Therefore, $FM \perp AB$ and THEOREM 1 is proved.

THEOREM 2 Let a focus of a hyperbola be F and two points on the hyperbola be A and B such that A, B and F are collinear. Two tangents of the hyperbola passing through A and B are drawn. If the point of intersection of the two tangents is M, then $FM \perp AB$.

The proof of THEOREM 2 is similar to that of THEOREM 1. So it is omitted.

THEOREM 3 Let the focus of a parabola be F and two points on the parabola be A and B such that A, B and F are collinear. Two tangents of the parabola passing through A and B are drawn. If the point of intersection of the two tangents is M, then $FM \perp AB$.

PROOF Let the equation of the parabola be
$$x^2 = 2py$$
.
Then we have $y = \frac{x^2}{2p}$, focus $F(0, \frac{p}{2})$ and $y' = \frac{x}{p}$

We put $A(x_1, y_1)$, $B(x_2, y_2)$. Let k_A and k_B be the slopes of the tangents at A and B respectively. Then $k_A = \frac{x_1}{p}$, $k_B = \frac{x_2}{p}$.

數學教育第二十五期 (12/2007)

The equation of tangent at A is $y - y_1 = \frac{x_1}{p}(x - x_1) = \frac{x_1}{p}x - \frac{x_1^2}{p}$

Since
$$y_1 = \frac{x_1^2}{2p}$$
, $y = \frac{x_1}{p}x - y_1$. (7)

Similarly, the equation of tangent at *B* is $y = \frac{x_2}{p}x - y_2$. (8)

By (7) and (8), we have $M = (\frac{x_1 + x_2}{2}, \frac{x_1 x_2}{2p}).$

Since A, B and F are collinear, there is a positive real number λ such that $\overrightarrow{AF} = \lambda \overrightarrow{FB}$.

As
$$\overrightarrow{AF} = (-x_1, \frac{p}{2} - y_1)$$
 and $\overrightarrow{FB} = (x_2, y_2 - \frac{p}{2})$, we have
 $-x_1 = \lambda x_2$ and $\frac{p}{2} - y_1 = \lambda (y_2 - \frac{p}{2})$.

So
$$x_1 = -\lambda x_2$$
 and $y_1 = \frac{p}{2} + \frac{p\lambda}{2} - \lambda y_2$.

Then
$$\frac{x_1^2}{2p} = \frac{p}{2} + \frac{p\lambda}{2} - \lambda \cdot \frac{x_2^2}{2p}$$
. $\frac{\lambda^2 x_2^2}{2p} = \frac{p}{2} + \frac{p\lambda}{2} - \frac{\lambda x_2^2}{2p}$.
Thus $x_2 = \pm \frac{p}{\sqrt{\lambda}}$. Taking $x_2 = \frac{p}{\sqrt{\lambda}}$, we have $x_1 = -p\sqrt{\lambda}$.

Hence
$$x_1 x_2 = -p^2$$
, $x_1 + x_2 = \frac{p - p\lambda}{\sqrt{\lambda}}$ and $M = (\frac{p - p\lambda}{2\sqrt{\lambda}}, -\frac{p}{2})$.

Since
$$\overrightarrow{FM} = (\frac{p - p\lambda}{2\sqrt{\lambda}}, -p)$$
, $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1) = (\frac{p + p\lambda}{\sqrt{\lambda}}, \frac{p(1 - \lambda^2)}{2\lambda})$, and hence $\overrightarrow{FM} \cdot \overrightarrow{AB} = \frac{p^2(1 - \lambda^2)}{2\lambda} - \frac{p^2(1 - \lambda^2)}{2\lambda} = 0$.

So $FM \perp AB$. Similarly, we also have $FM \perp AB$ if $y^2 = 2px$. Therefore, THEOREM 3 is proved. Combining THEOREM 1, THEOREM 2 and THEOREMK 3, we can get:

THEOREM 4 Let a focus of a conic section be F and two points on the conic section be A and B such that A, B and F are collinear. Two tangents of the conic section passing through A and B are drawn. If the point of intersection of the two tangents is M, then $FM \perp AB$. Furthermore, M is a point on the directrix of the conic section corresponding to the focus F.

Email: zhangyunyuan@mail.china.com

Editor's Note

Zhang Yun has stated and proved a very beautiful property in conic section which is not often mentioned in usual textbooks. One of our reviewers has found a shorter way to prove this property and it is given as follows:

Let $A(x_2, y_2)$ and $B(x_3, y_3)$ be two points lying on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $M(x_1, y_1)$ be the intersection of the tangents at A and B. Since the equation of the tangent at A is $\frac{xx_2}{a^2} + \frac{yy_2}{b^2} = 1$ and this tangent passes through $M(x_1, y_1)$, we have $\frac{x_1x_2}{a^2} + \frac{y_1y_2}{b^2} = 1$. In other words, $A(x_2, y_2)$ satisfies the equation $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$. By similar argument, $B(x_3, y_3)$ also satisfies the equation $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$. As $\frac{xx_1}{x^2} + \frac{yy_1}{b^2} = 1$ is linear, it must be the equation of AB. Let F(c, 0) be a focus of the ellipse. (Then $c^2 = a^2 - b^2$.) If AB passes through F, we have $\frac{cx_1}{a^2} = 1 \implies x_1 = \frac{a^2}{c}$. Hence, *M* lies on a directirx of the ellipse. Slope of $AB = -\frac{b^2 x_1}{a^2 y_1} = -\frac{b^2}{c y_1}$, from the equation of AB. Slope of $FM = \frac{y_1}{x_1 - c} = \frac{y_1}{\frac{a^2}{c} - c} = \frac{cy_1}{a^2 - c^2} = \frac{cy_1}{b^2}$, as $c^2 = a^2 - b^2$. slope of $AB \times \text{slope of } MF = -1$, $FM \perp AB$