Three Solutions for a CE Multiple-choice Question

Chan Chui See St. Paul's Co-educational College

Recently, my students from different classes (including students from junior forms) asked me a CE multiple-choice question. Here is the question and three different solutions.

Question (92-CE-Maths II #54)

In the figure, ABCD is a square of side a and BDEF is a rhombus. CEF is a straight line. Find the length of the perpendicular from B to DE.

Solution 1

 $DE = DB = \sqrt{2}a$, DC = a, $\angle DCE = 135^{\circ}$.

Consider $\triangle DCE$ and using the sine formula, we have $\angle DEC = 30^{\circ}$. Hence, $\angle CDE = 15^{\circ}$, $\angle BDG = 30^{\circ}$. Consider $\triangle DBC$, we have $BG = \frac{a}{\sqrt{2}}$.

Solution 2

Reflect the figure along *CF*. $\Delta DED'$ is an equilateral triangle, i.e. $\angle EDD' = 60^{\circ}$. $\angle ADB + \angle BDE + \angle EDD' = 135^{\circ}$ and $\angle ADB = 45^{\circ}$. Therefore, $\angle BDG = 30^{\circ}$. $BG = \frac{a}{\sqrt{2}}$.

Solution 3

數學教育第十九期 (12/2004)

 $\angle BCH = 45^{\circ}$.

Therefore $\triangle BCH$ is an isosceles triangle.

$$BH = \frac{a}{\sqrt{2}} \quad .$$
$$BG = BH = \frac{a}{\sqrt{2}} \quad .$$

The initiative ideas of Solution 1 and Solution 2 are similar and straight-forward. If we know the measure of $\angle BDG$, we can find BG. Solution 1 uses sine formula which is taught in senior form. Solution 2 does not need to use sine formula, but students seldom come across such kind of solution.

Solution 3 is creative and it is suggested by a junior form student. Instead of finding the measure of $\angle BDG$, the student notices that BG = BH. Students can find BH with sine. However, since $\triangle BCH$ is an isosceles triangle, students can find BH with the Pythagoras Theorem. That means students can solve this problem with simple geometrical knowledge only!