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Introduction 
Here I would like to mention some elementary methods of evaluating the 

probability integral ∫
∞ −

0
2 d

2

xe
x

 .  The result  2
d

0
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2

π
=∫
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  is usually 

obtained by advanced techniques and is therefore omitted to sixth formers.  In 

fact, with some plausible assumptions, it is possible to evaluate the probability 

integral using elementary methods which can be understood by students 

studying A-level Pure Mathematics.  These methods deserve to be better 

known, as the result  2
d

0
2

2

π
=∫

∞ −
xe

x

  is fundamental in the normal 

distribution of statistics, and is also a typical example of the surprising fact that 

although some ordinary integrals    cannot be found, the improper 

integral    can nevertheless be evaluated.  The methods are 

modified as exercises here, since it would be more interesting for students to 

derive the result themselves than being told by teachers directly. 
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The idea of Exercise 1 originated from [1] and [2].  Both authors of these 

two articles pointed out that the integral  ∫
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0
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  is closely related to  
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n  .  However, complicated integral transformations were 

used.  In fact, these transformations can be avoided.  Using the fact that  
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 ,  the relation between  ∫
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  and  
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dcoslim n
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n   becomes more apparent, as shown in Exercise 1. 

Exercise 1 

∫
π
2

0
dcos xxnLet  In =  . 

(a) For any positive integer  n ≥ 2 ,  show that  In = n
n 1−

In−2 . 

(b) Using (a), or otherwise, show that, for any positive integer  n ≥ 2 , 

n In In−1 = (n − 1) In−1 In−2 . 

(c) Hence, or otherwise, show that, for any positive integer  n , 

n In In−1 = 2
π

 . 

(d) Using (c), or otherwise, show that  2
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(e) For any positive integer  n ,  using the substitution  x = tn2  ,  show 
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Brief Solution: 
The result in (a) can be obtained by integration by parts.  Using (a), we 

have n In = (n − 1) In−2  
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⇒ n In In−1 = (n − 1) In−1 In−2  

⇒ n In In−1 = (n − 1) In−1 In−2   

  = (n − 2) In−2 In−3   

  = … 

  = 1 ⋅ I1 I0  =  2
π

 

Since  In < In−1 ,  we have  n In
2 < n In In−1 = 2

π
 . 

Moreover,  n In
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Therefore we have  21
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Taking limits, we have 
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M. Spivak in [3] suggested another way of connecting the probability 

integral with  ∫ θθ2

0
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 ,  which avoids using the assumption  
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 .  His approach is modified 

as Exercise 2 below. 
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Exercise 2 

(a) Show that, for all real number  x ,  1 − x2 ≤ e−x² ≤ 21
1
x+

 . 

(b) Using (a), show that for any positive integer  n , 
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Brief Solution: 
The result in (a) can be proved by differentiation easily.  The first result in 

(b) is obtained by raising the inequality in (a) to power  n  and integrate, and 

note that  ∫∫
∞

+
<

+ 0 2
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 .  Then apply the substitutions   

x = sin θ ,  u = xn   and  x = tan θ  respectively to the three integrals to 

obtain the second result in (b).  Take  n  tends to infinity, we have  

2
d
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2 π
=∫

∞ − ue u   by squeezing theorem. 

Parametric Integration Technique 
Another interesting method to evaluate the integral is the “parametric 

integration technique”, which assumes that differentiation with respect to the 

parameter  t  of an integral can be carried under the integral sign ([4], [5]), as 

illustrated by Exercise 3. 

Exercise 3 

For any  t ≥ o ,  define  f (t) = ∫
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 . 

(a) Find  f (0) . 
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(b) Show that  0 < f (t) ≤ e−t ⋅ 2
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(d) By integrating the last result in (c) and using the result in (b), show that   
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Brief Solution: 

 f (0) = ∫
∞

+0 21
d

x
x

  =  2
π

 , 

 f (t) = ∫
∞ −

−

+0 2 d
1

2

x
x
ee

tx
t  

  ≤ ∫
∞−

+0 2 d
1

1 x
x

e t   =  e−t
 ⋅ 2

π
 

⇒ f (∞) = 0 . 

 )(
d
d tf
t  = ∫

∞ +−

+0 2

)1(

d
1d

d
2

x
x

e
t

xt

 

  = ∫
∞ +−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+0 2

)1(

d
1d

d
2

x
x

e
t

xt

 

  = ∫  
∞ +−−

0

)1( d
2

xe xt

  = ∫  
∞ −−−

0
d

2

xee txt

  = ∫
∞ −

−−
0

)( )d(
2

xte
t

e xt
t

 

  = I
t

e t−

−  where  I = ∫  
∞ −

0
d

2

ue u

59 



數學教育第十六期 (6/2003) 

Hence, f (∞) − f (0) = ∫
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The above exercises provide a good chance for students to learn an 

amazing and important result in analysis.  Teachers can obtain more examples 

of evaluating other improper integrals in [4], [5] and [6], so that students can 

appreciate more beautiful results in analysis, and have more interesting 

exercises as well. 
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