On Euler's formula

OR Chi Ming Munsang College

When teaching the general solution of the linear, homogeneous, second-order differential equation

$$
a\frac{d^2 y}{dx^2} + b\frac{dy}{dx} + cy = 0
$$
(1)

where *a*, *b*, *c* are constants with $b^2 - 4ac < 0$, many teachers face a problem of using Euler's formula

$$
e^{i\theta} = \cos\theta + i\sin\theta
$$

to simplify the general solution from $y = Ae^{(p+iq)x} + Be^{(p-iq)x}$ to $y = e^{px} (C \cos qx + D \sin qx)$, where $p \pm qi$ are the complex roots of the auxiliary equation $a\lambda^2 + b\lambda + c = 0$. The difficulty is that Euler's formula involves complex variables and is usually proved using Taylor's series which is unfamiliar to sixth-form students. The following suggests a simple way of establishing the validity of Euler's formula.

Let
$$
y = \cos \theta + i \sin \theta
$$
. Then
\n
$$
\frac{dy}{d\theta} = \frac{d}{d\theta} (\cos \theta + i \sin \theta)
$$
\n
$$
= \frac{d}{d\theta} (\cos \theta) + i \frac{d}{d\theta} (\sin \theta) \qquad \text{since } i \text{ is a constant}
$$
\n
$$
= -\sin \theta + i \cos \theta
$$
\n
$$
= i(\cos \theta + i \sin \theta) \qquad \text{since } i^2 = -1
$$
\n
$$
= iy
$$

Therefore *y* satisfies a simple first order differential equation

$$
\frac{dy}{d\theta} = iy
$$

\n
$$
\therefore \frac{dy}{y} = id\theta
$$

\n
$$
\int \frac{dy}{y} = i \int d\theta
$$

\n
$$
\therefore \ln y = i\theta + C \quad \text{where } C \text{ is an arbitrary constant}
$$

\ni.e. $y = C e^{i\theta}$ where $C = e^C$

數學教育 第十三期 EduMath 13 (12/2001)

Since when
$$
\theta = 0
$$
, $y = \cos 0 + i \sin 0 = 1$, we have $C = 1$.
\n
$$
\therefore y = e^{i\theta}
$$
\ni.e. $\cos \theta + i \sin \theta = e^{i\theta}$

 As stated by Mr. Cheung Pak Hong in [1], students may be puzzled by the complex variables involved in Euler's formula. To help the students understand Euler's formula better, teachers can remind the students that the function $f(\theta)$ = cos $\theta + i \sin \theta$ satisfies the special property that for all θ and ϕ ,

$$
f(\theta)f(\phi) = (\cos \theta + i \sin \theta)(\cos \phi + i \sin \phi)
$$

= (\cos \theta \cos \phi - \sin \theta \sin \phi) + i (\sin \theta \cos \phi + \cos \theta \sin \phi)
= \cos (\theta + \phi) + i \sin (\theta + \phi)
= f(\theta + \phi)

Note that the exponential function $f(x) = a^x$ (*a* is a constant) satisfies this property, and it is therefore sensible to say that $f(\theta) = \cos \theta + i \sin \theta$ is an exponential function. In fact it can be proved that if a function *f* is non-zero, differentiable and $f(x + y) = f(x) f(y)$ for all *x* and *y*, then $f(x) = e^{\alpha x}$ where α $= f'(0)$ (See [2] or [3]).

 Note that if teachers and students are still uncomfortable of using complex numbers to find the real solutions of a real differential equation, they could be satisfied by a method suggested by Mr. Cheung Pak Hong in [1]. This method has the advantage of not using complex numbers, but at the price of losing the convenience and efficiency of solving (1) by auxiliary equations.

Reference

- 1. Cheung, P.H. Teaching Differential Equations in School: Can Complex Numbers Be Abandoned? *Teaching Mathematics and its Applications*, 1993, 12(1), pp.32-33.
- 2. Hardy, G.H. *A Course of Pure Mathematics*, (ELBS), (1944), pp.408.
- 3. Spivak, M. *Calculus*, (Addison Wesley), (1967), pp.300.