"World's Hardest Easy Geometry Problem"

In the figure, find $\angle A C D$.
I. Construction by compass and rulers
II. Deductive approach:

Solutions:

Let $\angle A C D=\theta$ and $A B=x$.

By (\angle sum of Δ), we have the following angles as shown in the figure:

Method 1 (Purely Trigonometry)

In $\triangle A B D, \frac{B D}{\sin 80^{\circ}}=\frac{x}{\sin 40^{\circ}}$
$B D=\frac{x \sin 80^{\circ}}{\sin 40^{\circ}}=\frac{x\left(2 \sin 40^{\circ} \cos 40^{\circ}\right)}{\sin 40^{\circ}}=2 x \cos 40^{\circ}=2 x \sin 50^{\circ}$

In $\triangle A B C, \frac{B C}{\sin 70^{\circ}}=\frac{x}{\sin 30^{\circ}}$
$B C=\frac{x \sin 70^{\circ}}{\left(\frac{1}{2}\right)}=2 x \sin 70^{\circ}$

In $\triangle B C D, \frac{B C}{\sin \left(130^{\circ}-\theta\right)}=\frac{B D}{\sin \left(30^{\circ}+\theta\right)}$
$\frac{B C}{B D}=\frac{\sin \left(130^{\circ}-\theta\right)}{\sin \left(30^{\circ}+\theta\right)}$
$\frac{2 x \sin 70^{\circ}}{2 x \sin 50^{\circ}}=\frac{\sin \left[180^{\circ}-\left(130^{\circ}-\theta\right)\right]}{\sin \left(30^{\circ}+\theta\right)}$
$\frac{\sin 70^{\circ}}{\sin 50^{\circ}}=\frac{\sin \left(50^{\circ}+\theta\right)}{\sin \left(30^{\circ}+\theta\right)}$
$\sin 70^{\circ} \sin \left(30^{\circ}+\theta\right)=\sin 50^{\circ} \sin \left(50^{\circ}+\theta\right)$
$-\frac{1}{2}\left[\cos \left(100^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)\right]=-\frac{1}{2}\left[\cos \left(100^{\circ}+\theta\right)-\cos \theta\right]$

$\cos \left(40^{\circ}-\theta\right)=\cos \theta$
$\theta=360 n^{\circ} \pm\left(40^{\circ}-\theta\right)$, where n is an integer.

$$
\begin{aligned}
& 2 \theta=360 n^{\circ}+40^{\circ} \quad \text { or } 360 n^{\circ}-40^{\circ}=0^{\circ} \text { (rej.) } \\
& \theta=180 n^{\circ}+20^{\circ} \\
& 0^{\circ}<\theta<130^{\circ}, \therefore \theta=20^{\circ} .
\end{aligned}
$$

Remarks:

1. It is the shortest proof but not an elegant one. Not much insight is developed in this method.

One may not know under what circumstances we should interchange $\sin \theta$ and $\sin \left(180^{\circ}-\theta\right)$.
2. Yet, trigonometry establishes the relationship between angles and lengths of sides in geometry. This helps avoid construction of extra straight lines.

Method 2 (Pseudo Geometric Approach)

Let $D E=a$ and $A B=b$

$$
\angle D E B=\angle D B E=20^{\circ},
$$

$\therefore D E=D B=a$
(sides opp. eq. \angle s)
Let G be a point on $D A$ so that $\angle G B D=40^{\circ}$.
$\therefore \angle G D B=\angle G B D=40^{\circ}$
$\therefore G D=G B$
$\angle G B A=60^{\circ}-40^{\circ}=20^{\circ}$
$\angle A G B=180^{\circ}-20^{\circ}-\left(10^{\circ}+70^{\circ}\right)=80^{\circ} \quad(\angle$ sum of $\Delta)$
$\angle G A B=\angle A G B=80^{\circ}$
$\therefore G B=A B=b \quad$ (sides opp. eq. $\angle \mathrm{s}$)
$\therefore G D=G B=A B=b$

Let H be the point of intersection of $A C$ and $B G$.
$\angle C H B=180^{\circ}-30^{\circ}-\left(20^{\circ}+40^{\circ}\right)=90^{\circ} \quad(\angle$ sum of $\Delta)$
$\angle H F B=180^{\circ}-90^{\circ}-40^{\circ}=50^{\circ} \quad(\angle \operatorname{sum}$ of $\Delta)$
$\angle C F B=180^{\circ}-50^{\circ}=130^{\circ}$
(adj. $\angle \mathrm{s}$ on st. line)
$\frac{H B}{A B}=\sin 70^{\circ}$
$H B=b \sin 70^{\circ}$

$$
\frac{H B}{C B}=\sin 30^{\circ}=\frac{1}{2}
$$

$$
C B=2 b \sin 70^{\circ}
$$

$\frac{H B}{F B}=\sin 50^{\circ}$
$F B=\frac{b \sin 70^{\circ}}{\sin 50^{\circ}}$
$\triangle G B D$ is isos.
$\therefore \frac{\left(\frac{B D}{2}\right)}{G D}=\cos 40^{\circ}=\sin 50^{\circ}$
$a=2 b \sin 50^{\circ}$
$\triangle A B E$ is isos.,

$\therefore \frac{\left(\frac{A B}{2}\right)}{B E}=\sin \left(\frac{20^{\circ}}{2}\right)=\sin 10^{\circ}$

$$
B E=\frac{b}{2 \sin 10^{\circ}}
$$

$$
C E=B E-B C=\frac{b}{2 \sin 10^{\circ}}-2 b \sin 70^{\circ}
$$

$$
C E=b\left(\frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}\right)=\frac{b\left(1-4 \sin 70^{\circ} \sin 10^{\circ}\right)}{2 \sin 10^{\circ}}=\frac{b\left[1-2\left(\cos 60^{\circ}-\cos 80^{\circ}\right)\right]}{2 \sin 10^{\circ}}
$$

$$
C E=\frac{2 b \cos 80^{\circ}}{2 \sin 10^{\circ}}=\frac{b \sin 10^{\circ}}{\sin 10^{\circ}}=b
$$

In $\triangle C E D \& \triangle F B C$,

$$
\angle C E D=\angle F B C=20^{\circ}
$$

(proved)
$\frac{E D}{C E}=\frac{2 b \sin 50^{\circ}}{b}=2 \sin 50^{\circ}$

$$
\begin{aligned}
& \frac{B C}{F B}=\frac{2 b \sin 70^{\circ}}{\left(\frac{b \sin 70^{\circ}}{\sin 50^{\circ}}\right)}=2 \sin 50^{\circ} \\
& \therefore \frac{E D}{C E}=2 \sin 50^{\circ}=\frac{B C}{F B} \\
& \therefore \Delta C E D \sim \triangle F B C \\
& \therefore \angle E C D=\angle B F C=130^{\circ} \\
& \text { (ratio of } 2 \text { sides, inc. } \angle \text {) } \\
& \angle A C D=180^{\circ}-30^{\circ}-130^{\circ}=20^{\circ} \\
& \text { (corr. } \angle \mathrm{s}, \sim \Delta \mathrm{~s} \text {) } \\
& \therefore \text { adj. } \angle \mathrm{s} \text { on st. line) }
\end{aligned}
$$

Remarks:

1. It is not natural to guess that $\triangle C E D \sim \triangle F B C$ with limited given conditions.
2. By constructing isosceles $\triangle G B D$, we fortunately get the right angle $\angle C H B$. Hence we get all the angles $10^{\circ}, 20^{\circ}, 30^{\circ}, \quad, 80^{\circ}, 90^{\circ}$ and $\triangle G B A \sim \triangle A E B$, though it is not used in the proof.
3. This method yields some more trigonometric identities:
(a) $C E=\frac{b}{2 \sin 10^{\circ}}-2 b \sin 70^{\circ}=b$
$\therefore \frac{1}{2 \sin 10^{\circ}}-2 \sin 70^{\circ}=1$
(b) $\frac{\left(\frac{G A}{2}\right)}{b}=\sin \left(\frac{20^{\circ}}{2}\right)=\sin 10^{\circ}$
$\therefore G A=2 b \sin 10^{\circ}$
from $E A=E B$, we have $2 b \sin 50^{\circ}+b+2 b \sin 10^{\circ}=b+2 b \sin 70^{\circ}$
i.e. $\sin 10^{\circ}+\sin 50^{\circ}=\sin 70^{\circ}$ or equivalently, $\cos 40^{\circ}+\cos 80^{\circ}=\cos 20^{\circ}$.
4. Indeed students may use calculator to obtain the identity in point 3 , hence students with knowledge of geometry (up to congruent and similar triangles) and trigonometric RATIOs only are able to understand (but not necessarily to give!) the proof.

Method 3 (Purely Geometric Approach)
Let P be a point on $D B$ such that $E P$ is the angle bisector of $\angle A E B$.

Construct $A P$.

In $\triangle A E P \& \triangle B E P$,
$E P=E P$
(common)
$\angle A E P=\angle B E P=10^{\circ}$
(by construction)
$\angle E A B=\angle E B A=80^{\circ}$
$\therefore A E=B E$
$\therefore \triangle A E P \cong \triangle B E P$
(sides opp. eq. \angle s)

$\therefore \angle E A P=\angle E B P=20^{\circ}$
(corr. $\angle \mathrm{s}, \cong \Delta \mathrm{s})$
$\angle C A P=20^{\circ}-10^{\circ}=10^{\circ}$
$\angle P A B=70^{\circ}-10^{\circ}=60^{\circ}$
$\angle A P B=180^{\circ}-60^{\circ}-60^{\circ}=60^{\circ} \quad(\angle \operatorname{sum}$ of $\triangle)$
$\therefore \triangle A P B$ is an equil. \triangle
$\therefore A P=P B=A B$
(def. of equil. Δ)
Let them be y.
In $\triangle A E C \& \triangle E B P$,

$\angle E A C=\angle B E P=10^{\circ}$	(proved)
$\angle A E C=\angle E B P=20^{\circ}$	(proved)
$A E=E B$	(proved)
$\therefore \triangle A E C \cong \triangle E B P$	(ASA)
$\therefore E C=B P=y$	(corr. sides, $\cong \triangle \mathrm{s}$)

Extend $A P$ to meet $B E$ at Q. Construct $D Q$.
$\angle D P Q=\angle A P B=60^{\circ} \quad$ (vert. opp. $\angle \mathrm{s}$)

In $\triangle D A B \& \triangle Q B A$,

$$
\angle D A B=\angle Q B A=80^{\circ} \quad \text { (given) }
$$

$$
A B=B A
$$

(common)
$\angle D B A=\angle Q A B=60^{\circ} \quad$ (proved)
$\therefore \triangle D A B \cong \triangle Q B A$
$\therefore D B=Q A$
(corr. sides $\cong \triangleq \mathrm{s}$)

Let them be x.
$D P=D B-P B=x-y=Q A-P A=Q P$
$\therefore \angle P D Q=\angle P Q D \quad($ base $\angle \mathrm{s}$, isos. $\Delta)$
$=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ} \quad(\angle \operatorname{sum}$ of $\Delta)$
$\therefore \triangle D P Q$ is an equil. Δ

$\therefore D Q=Q P=D P=x-y \quad$ (def. of equil. Δ)

$$
\begin{aligned}
& \angle P Q D=\angle Q A B=60^{\circ} \\
& \therefore D Q / / A B \\
& \therefore \angle E Q D=\angle E B A=80^{\circ} \\
& \angle E D Q=180^{\circ}-20^{\circ}-80^{\circ}=80^{\circ} \\
& \angle D E B=\angle D B E=20^{\circ} \\
& \therefore E D=D B=x \\
& \angle E D Q=\angle E Q D=80^{\circ} \\
& \therefore E Q=E D=x \\
& \text { (sides opp. eq. } \angle \text { s) } \\
& \therefore C Q=E Q-E C=x-y=D Q \\
& \therefore \angle Q C D=\angle Q D C \\
& \text { (base } \angle \mathrm{s} \text {, isos. } \Delta \text {) } \\
& =\frac{180^{\circ}-80^{\circ}}{2}=50^{\circ} \\
& (\angle \operatorname{sum} \text { of } \Delta) \\
& \therefore \angle A C D=50^{\circ}-30^{\circ}=20^{\circ}
\end{aligned}
$$

Remarks:

1. This is the most famous proof. All the other proofs that can be found on the web employ the same construction of straight lines.
2. It is a natural way to divide the isosceles triangle along the axis of symmetry. By doing so, we are lucky to obtain equilateral triangles and parallel lines.
3. As it is purely deductive geometric approach, the proof is long and complicated, but an elegant one.

Teaching in Junior Secondary Level

The pedagogy of "Cooperative Learning" is adopted. Practically it is done in the following way: The problem is divided into 5 parts for 5 expert groups (A, B, C, D, E) of students to work on. After that, 1 student from each expert group will form a STAD group, and they will combine the results together. See the appendix of the worksheets.

Further Discussion

1. "World Second Hardest Easy Geometry Problem"

In the figure, find $\angle A C D$.

If we try to generalize the situation as follows:

Consider $\triangle A B E$ with some angles marked as shown in the figure. A natural question is: "Is there any general relation between the marked angles?"

Similar to Method 1 above, we apply sine law several times.

In $\triangle A B D, \quad \frac{A D}{\sin b}=\frac{A B}{\sin \left(180^{\circ}-a-a^{\prime}-b\right)}$

$$
\begin{equation*}
\frac{A D}{A B}=\frac{\sin b}{\sin \left(a+a^{\prime}+b\right)} . \tag{l}
\end{equation*}
$$

In $\triangle A B C, \quad \frac{A C}{\sin \left(b+b^{\prime}\right)}=\frac{A B}{\sin \left(180^{\circ}-a-b-b^{\prime}\right)}$

$$
\begin{equation*}
\frac{A B}{A C}=\frac{\sin \left(a+b+b^{\prime}\right)}{\sin \left(b+b^{\prime}\right)} \cdots . . \tag{2}
\end{equation*}
$$

In $\triangle A D C, \quad \frac{A D}{\sin x}=\frac{A C}{\sin \left(180^{\circ}-a^{\prime}-x\right)}$

$$
\begin{equation*}
\frac{A C}{A D}=\frac{\sin \left(x+a^{\prime}\right)}{\sin x} \tag{3}
\end{equation*}
$$

(1) $\times(2) \times$ (3) $\quad \frac{A D}{A B} \times \frac{A B}{A C} \times \frac{A C}{A D}=\frac{\sin b}{\sin \left(a+a^{\prime}+b\right)} \times \frac{\sin \left(a+b+b^{\prime}\right)}{\sin \left(b+b^{\prime}\right)} \times \frac{\sin \left(x+a^{\prime}\right)}{\sin x}$

$$
\begin{equation*}
\frac{\sin \left(x+a^{\prime}\right)}{\sin x}=\frac{\sin \left(a+a^{\prime}+b\right) \times \sin \left(b+b^{\prime}\right)}{\sin \left(a+b+b^{\prime}\right) \times \sin b} . \tag{*}
\end{equation*}
$$

The following table shows some solutions of equation $(*)$.

a	a^{\prime}	b	b^{\prime}	x
75	25	40	30	30
66	22	46	30	30
60	20	50	30	30
39	13	64	30	30
30	10	70	30	30
21	7	76	30	30
6	2	86	30	30

Some patterns of the solution are observed. If we start with $\left(a_{0}, a_{0}^{\prime}, b_{0}\right)=(75,25,40)$, while keeping $b^{\prime}=30$ and $x=30$ unchanged, then we can generate the the solutions of (*) by replacing $\left(a_{0}, a_{0}^{\prime}, b_{0}\right)$ by $\left(a_{0}-3 k, a_{0}^{\prime}-k, b_{0}+2 k\right)$, where $-5<k<25$.
2. In Class Example (DSE Application of Trigonometry in 2-dimensional Problems):

The figure shows a quadrilateral $A B C D$, where $A B=8 \mathrm{~cm}$, $\angle A B D=22^{\circ}, \angle D B C=46^{\circ}, \angle A C B=35^{\circ}$ and $\angle A C D=30^{\circ}$.
(a) Find the length of $B C$.
(b) Find the length of $A D$.

3. IMO Preliminary Selection Contest Hong Kong 2014

Question 9
$\triangle A B C$ is isosceles with $A B=A C . P$ is a point inside $\triangle A B C$ so that $\angle B C P=30^{\circ}, \angle A P B=150^{\circ}$ and $\angle C A P=39^{\circ}$. Find $\angle B A P$. (1 mark)

Answers:
1.) 30°
2.) (a) 13.6 cm
(b) 6.51 cm
3.) 13°

F. 2 Math CL Geometry (Expert Summary Group 1)

(a) Prove that $E A=E B$.

Let P be a point on $D B$ so that $E P$ is the angle bisector of $\angle A E B$. Construct $A P$.
(b) Using (a), prove that $\triangle A E P \cong \triangle B E P$.

(c) Using (b), find $\angle C A P$ and $\angle P A B$.

(d) Using (c), prove that $\triangle A P B$ is an equilateral triangle.

F. 2 Math CL Geometry (Expert Summary Group 2)

(a) Find $\angle A E C$.

Let P be a point on $D B$ so that $E P$ is the angle bisector of $\angle A E B$.
It is given that $A E=E B . \quad$ (proved by Expert Group 1)
(c) Using (a), prove that $\triangle A E C \cong \triangle E B P$.

(d) Name the corresponding side of $B P$.

F. 2 Math CL Geometry (Expert Summary Group 3)

Let P be a point on $D B$ so that $\triangle A P B$ is an equilateral triangle
(from Expert Group 1)

Extend $A P$ to meet $B E$ at Q.
(a) Find $\angle Q A B$.
(b) Using (a), prove that $\triangle D A B \cong \triangle Q B A$.

(c) Name the corresponding side of $D B$.
(d) Using (c), prove that $P D=P Q$.

F. 2 Math CL Geometry (Expert Summary Group 4)

Let P be a point on $D B$ so that $\triangle A P B$ is an equilateral triangle. (from Expert Group 1)

Extend $A P$ to meet $B E$ at Q.

It is given that $P D=P Q$.
(proved by Expert Group 3)
(a) Find $\angle D P Q$.

(c) Using (b), prove that $D Q / / A B$.

F. 2 Math CL Geometry (Expert Summary Group 5)

Let P be a point on $D B$ so that $\triangle A P B$ is an equilateral triangle.
(from Expert Group 1)

Extend $A P$ to meet $B E$ at Q.

It is given that $D Q / / A B$.
(proved by Expert Group 4)
(a) Find $\angle E D Q$ and $\angle E Q D$.
(b) Using (a), prove that $E D=E Q$.

It is also given that

1. $D B=D E$
(proved by Expert Group 2)
2. $B P=E C=x \quad$ (proved by Expert Group 2)
3. $D P=P Q=Q D=y \quad$ (proved by Expert Group 4)
(c) Using (b), prove that $Q C=Q D=y$.

(d) Using (a) and (c), find $\angle Q C D$ and $\angle A C D$.

